Package: BayesianMCPMod 1.1.0

Stephan Wojciekowski

BayesianMCPMod: Simulate, Evaluate, and Analyze Dose Finding Trials with Bayesian MCPMod

Bayesian MCPMod (Fleischer et al. (2022) <doi:10.1002/pst.2193>) is an innovative method that improves the traditional MCPMod by systematically incorporating historical data, such as previous placebo group data. This R package offers functions for simulating, analyzing, and evaluating Bayesian MCPMod trials with normally distributed endpoints. It enables the assessment of trial designs incorporating historical data across various true dose-response relationships and sample sizes. Robust mixture prior distributions, such as those derived with the Meta-Analytic-Predictive approach (Schmidli et al. (2014) <doi:10.1111/biom.12242>), can be specified for each dose group. Resulting mixture posterior distributions are used in the Bayesian Multiple Comparison Procedure and modeling steps. The modeling step also includes a weighted model averaging approach (Pinheiro et al. (2014) <doi:10.1002/sim.6052>). Estimated dose-response relationships can be bootstrapped and visualized.

Authors:Boehringer Ingelheim Pharma GmbH & Co. KG [cph, fnd], Stephan Wojciekowski [aut, cre], Lars Andersen [aut], Jonas Schick [ctb], Sebastian Bossert [aut]

BayesianMCPMod_1.1.0.tar.gz
BayesianMCPMod_1.1.0.zip(r-4.5)BayesianMCPMod_1.1.0.zip(r-4.4)BayesianMCPMod_1.1.0.zip(r-4.3)
BayesianMCPMod_1.1.0.tgz(r-4.5-any)BayesianMCPMod_1.1.0.tgz(r-4.4-any)BayesianMCPMod_1.1.0.tgz(r-4.3-any)
BayesianMCPMod_1.1.0.tar.gz(r-4.5-noble)BayesianMCPMod_1.1.0.tar.gz(r-4.4-noble)
BayesianMCPMod_1.1.0.tgz(r-4.4-emscripten)BayesianMCPMod_1.1.0.tgz(r-4.3-emscripten)
BayesianMCPMod.pdf |BayesianMCPMod.html
BayesianMCPMod/json (API)
NEWS

# Install 'BayesianMCPMod' in R:
install.packages('BayesianMCPMod', repos = c('https://boehringer-ingelheim.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/boehringer-ingelheim/bayesianmcpmod/issues

Pkgdown site:https://boehringer-ingelheim.github.io

On CRAN:

Conda:

6.94 score 9 stars 4 scripts 375 downloads 12 exports 74 dependencies

Last updated 1 days agofrom:6092b15365. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 07 2025
R-4.5-winOKMar 07 2025
R-4.5-macOKMar 07 2025
R-4.5-linuxOKMar 07 2025
R-4.4-winOKMar 07 2025
R-4.4-macOKMar 07 2025
R-4.4-linuxOKMar 07 2025
R-4.3-winOKMar 07 2025
R-4.3-macOKMar 07 2025

Exports:assessDesigngetBootstrapQuantilesgetBootstrapSamplesgetContrgetCritProbgetESSgetMEDgetModelFitsgetPosteriorperformBayesianMCPperformBayesianMCPModsimulateData

Dependencies:abindassertthatbackportsbayesplotBHcallrcheckmateclicodetoolscolorspacedescdigestdistributionalDoseFindingdplyrfansifarverFormulafuturefuture.applygenericsggplot2ggridgesglobalsgluegridExtragtableinlineisobandlabelinglatticelifecyclelistenvloomagrittrMASSMatrixmatrixStatsmgcvmunsellmvtnormnlmenloptrnumDerivparallellypillarpkgbuildpkgconfigplyrposteriorprocessxpsQuickJSRR6RBesTRColorBrewerRcppRcppEigenRcppParallelreshape2rlangrstanrstantoolsscalesStanHeadersstringistringrtensorAtibbletidyselectutf8vctrsviridisLitewithr

Analysis Example of Bayesian MCPMod for Continuous Data

Rendered fromanalysis_normal.Rmdusingknitr::rmarkdownon Mar 07 2025.

Last update: 2025-03-07
Started: 2023-10-20

Comparison of Bayesian MCPMod and MCPMod

Rendered fromSimulation_Comparison.Rmdusingknitr::rmarkdownon Mar 07 2025.

Last update: 2025-02-10
Started: 2025-02-06

Simulation Example of Bayesian MCPMod for Continuous Data

Rendered fromSimulation_Example.Rmdusingknitr::rmarkdownon Mar 07 2025.

Last update: 2025-03-07
Started: 2023-10-20

Readme and manuals

Help Manual

Help pageTopics
assessDesignassessDesign
getBootstrapQuantilesgetBootstrapQuantiles
getBootstrapSamplesgetBootstrapSamples
getContrgetContr
getCritProbgetCritProb
getESSgetESS
getMEDgetMED
getModelFitsgetModelFits
getPosteriorgetPosterior
performBayesianMCPperformBayesianMCP
performBayesianMCPModperformBayesianMCPMod
plot.modelFitsplot.modelFits
predict.modelFitspredict.modelFits
simulateDatasimulateData