Package: BayesianMCPMod 1.1.0
BayesianMCPMod: Simulate, Evaluate, and Analyze Dose Finding Trials with Bayesian MCPMod
Bayesian MCPMod (Fleischer et al. (2022) <doi:10.1002/pst.2193>) is an innovative method that improves the traditional MCPMod by systematically incorporating historical data, such as previous placebo group data. This R package offers functions for simulating, analyzing, and evaluating Bayesian MCPMod trials with normally distributed endpoints. It enables the assessment of trial designs incorporating historical data across various true dose-response relationships and sample sizes. Robust mixture prior distributions, such as those derived with the Meta-Analytic-Predictive approach (Schmidli et al. (2014) <doi:10.1111/biom.12242>), can be specified for each dose group. Resulting mixture posterior distributions are used in the Bayesian Multiple Comparison Procedure and modeling steps. The modeling step also includes a weighted model averaging approach (Pinheiro et al. (2014) <doi:10.1002/sim.6052>). Estimated dose-response relationships can be bootstrapped and visualized.
Authors:
BayesianMCPMod_1.1.0.tar.gz
BayesianMCPMod_1.1.0.zip(r-4.5)BayesianMCPMod_1.1.0.zip(r-4.4)BayesianMCPMod_1.1.0.zip(r-4.3)
BayesianMCPMod_1.1.0.tgz(r-4.5-any)BayesianMCPMod_1.1.0.tgz(r-4.4-any)BayesianMCPMod_1.1.0.tgz(r-4.3-any)
BayesianMCPMod_1.1.0.tar.gz(r-4.5-noble)BayesianMCPMod_1.1.0.tar.gz(r-4.4-noble)
BayesianMCPMod_1.1.0.tgz(r-4.4-emscripten)BayesianMCPMod_1.1.0.tgz(r-4.3-emscripten)
BayesianMCPMod.pdf |BayesianMCPMod.html✨
BayesianMCPMod/json (API)
NEWS
# Install 'BayesianMCPMod' in R: |
install.packages('BayesianMCPMod', repos = c('https://boehringer-ingelheim.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/boehringer-ingelheim/bayesianmcpmod/issues
Pkgdown site:https://boehringer-ingelheim.github.io
Last updated 1 days agofrom:6092b15365. Checks:9 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 07 2025 |
R-4.5-win | OK | Mar 07 2025 |
R-4.5-mac | OK | Mar 07 2025 |
R-4.5-linux | OK | Mar 07 2025 |
R-4.4-win | OK | Mar 07 2025 |
R-4.4-mac | OK | Mar 07 2025 |
R-4.4-linux | OK | Mar 07 2025 |
R-4.3-win | OK | Mar 07 2025 |
R-4.3-mac | OK | Mar 07 2025 |
Exports:assessDesigngetBootstrapQuantilesgetBootstrapSamplesgetContrgetCritProbgetESSgetMEDgetModelFitsgetPosteriorperformBayesianMCPperformBayesianMCPModsimulateData
Dependencies:abindassertthatbackportsbayesplotBHcallrcheckmateclicodetoolscolorspacedescdigestdistributionalDoseFindingdplyrfansifarverFormulafuturefuture.applygenericsggplot2ggridgesglobalsgluegridExtragtableinlineisobandlabelinglatticelifecyclelistenvloomagrittrMASSMatrixmatrixStatsmgcvmunsellmvtnormnlmenloptrnumDerivparallellypillarpkgbuildpkgconfigplyrposteriorprocessxpsQuickJSRR6RBesTRColorBrewerRcppRcppEigenRcppParallelreshape2rlangrstanrstantoolsscalesStanHeadersstringistringrtensorAtibbletidyselectutf8vctrsviridisLitewithr
Analysis Example of Bayesian MCPMod for Continuous Data
Rendered fromanalysis_normal.Rmd
usingknitr::rmarkdown
on Mar 07 2025.Last update: 2025-03-07
Started: 2023-10-20
Comparison of Bayesian MCPMod and MCPMod
Rendered fromSimulation_Comparison.Rmd
usingknitr::rmarkdown
on Mar 07 2025.Last update: 2025-02-10
Started: 2025-02-06
Simulation Example of Bayesian MCPMod for Continuous Data
Rendered fromSimulation_Example.Rmd
usingknitr::rmarkdown
on Mar 07 2025.Last update: 2025-03-07
Started: 2023-10-20
Readme and manuals
Help Manual
Help page | Topics |
---|---|
assessDesign | assessDesign |
getBootstrapQuantiles | getBootstrapQuantiles |
getBootstrapSamples | getBootstrapSamples |
getContr | getContr |
getCritProb | getCritProb |
getESS | getESS |
getMED | getMED |
getModelFits | getModelFits |
getPosterior | getPosterior |
performBayesianMCP | performBayesianMCP |
performBayesianMCPMod | performBayesianMCPMod |
plot.modelFits | plot.modelFits |
predict.modelFits | predict.modelFits |
simulateData | simulateData |