Package: BayesianMCPMod 1.0.2

Stephan Wojciekowski

BayesianMCPMod: Simulate, Evaluate, and Analyze Dose Finding Trials with Bayesian MCPMod

Bayesian MCPMod (Fleischer et al. (2022) <doi:10.1002/pst.2193>) is an innovative method that improves the traditional MCPMod by systematically incorporating historical data, such as previous placebo group data. This R package offers functions for simulating, analyzing, and evaluating Bayesian MCPMod trials with normally distributed endpoints. It enables the assessment of trial designs incorporating historical data across various true dose-response relationships and sample sizes. Robust mixture prior distributions, such as those derived with the Meta-Analytic-Predictive approach (Schmidli et al. (2014) <doi:10.1111/biom.12242>), can be specified for each dose group. Resulting mixture posterior distributions are used in the Bayesian Multiple Comparison Procedure and modeling steps. The modeling step also includes a weighted model averaging approach (Pinheiro et al. (2014) <doi:10.1002/sim.6052>). Estimated dose-response relationships can be bootstrapped and visualized.

Authors:Boehringer Ingelheim Pharma GmbH & Co. KG [cph, fnd], Stephan Wojciekowski [aut, cre], Lars Andersen [aut], Sebastian Bossert [aut], Steven Brooks [ctb], Jonas Schick [ctb], Gina Kleibrink [ctb]

BayesianMCPMod_1.0.2.tar.gz
BayesianMCPMod_1.0.2.zip(r-4.5)BayesianMCPMod_1.0.2.zip(r-4.4)BayesianMCPMod_1.0.2.zip(r-4.3)
BayesianMCPMod_1.0.2.tgz(r-4.5-any)BayesianMCPMod_1.0.2.tgz(r-4.4-any)BayesianMCPMod_1.0.2.tgz(r-4.3-any)
BayesianMCPMod_1.0.2.tar.gz(r-4.5-noble)BayesianMCPMod_1.0.2.tar.gz(r-4.4-noble)
BayesianMCPMod_1.0.2.tgz(r-4.4-emscripten)BayesianMCPMod_1.0.2.tgz(r-4.3-emscripten)
BayesianMCPMod.pdf |BayesianMCPMod.html
BayesianMCPMod/json (API)
NEWS

# Install 'BayesianMCPMod' in R:
install.packages('BayesianMCPMod', repos = c('https://boehringer-ingelheim.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/boehringer-ingelheim/bayesianmcpmod/issues

Pkgdown site:https://boehringer-ingelheim.github.io

On CRAN:

5.30 score 9 stars 5 scripts 201 downloads 11 exports 67 dependencies

Last updated 4 days agofrom:5fadf7cad1. Checks:1 ERROR, 7 WARNING. Indexed: yes.

TargetResultLatest binary
Doc / VignettesFAILJan 29 2025
R-4.5-winWARNINGJan 29 2025
R-4.5-macWARNINGJan 29 2025
R-4.5-linuxWARNINGJan 29 2025
R-4.4-winWARNINGJan 29 2025
R-4.4-macWARNINGJan 29 2025
R-4.3-winWARNINGJan 29 2025
R-4.3-macWARNINGJan 29 2025

Exports:assessDesigngetBootstrapQuantilesgetContrgetCritProbgetESSgetModelFitsgetModelSuccessesgetPosteriorperformBayesianMCPperformBayesianMCPModsimulateData

Dependencies:abindassertthatbackportsbayesplotBHcallrcheckmateclicolorspacedescdistributionalDoseFindingdplyrfansifarverFormulagenericsggplot2ggridgesgluegridExtragtableinlineisobandlabelinglatticelifecycleloomagrittrMASSMatrixmatrixStatsmgcvmunsellmvtnormnlmenloptrnumDerivpillarpkgbuildpkgconfigplyrposteriorprocessxpsQuickJSRR6RBesTRColorBrewerRcppRcppEigenRcppParallelreshape2rlangrstanrstantoolsscalesStanHeadersstringistringrtensorAtibbletidyselectutf8vctrsviridisLitewithr

Readme and manuals

Help Manual

Help pageTopics
assessDesign .assessDesign
getBootstrapQuantilesgetBootstrapQuantiles
getContrgetContr
getCritProbgetCritProb
getESSgetESS
getModelFitsgetModelFits
getPosteriorgetPosterior
performBayesianMCPperformBayesianMCP
performBayesianMCPModperformBayesianMCPMod
plot.modelFitsplot.modelFits
predict.modelFitspredict.modelFits
simulateDatasimulateData