Package: BayesianMCPMod 1.0.2
BayesianMCPMod: Simulate, Evaluate, and Analyze Dose Finding Trials with Bayesian MCPMod
Bayesian MCPMod (Fleischer et al. (2022) <doi:10.1002/pst.2193>) is an innovative method that improves the traditional MCPMod by systematically incorporating historical data, such as previous placebo group data. This R package offers functions for simulating, analyzing, and evaluating Bayesian MCPMod trials with normally distributed endpoints. It enables the assessment of trial designs incorporating historical data across various true dose-response relationships and sample sizes. Robust mixture prior distributions, such as those derived with the Meta-Analytic-Predictive approach (Schmidli et al. (2014) <doi:10.1111/biom.12242>), can be specified for each dose group. Resulting mixture posterior distributions are used in the Bayesian Multiple Comparison Procedure and modeling steps. The modeling step also includes a weighted model averaging approach (Pinheiro et al. (2014) <doi:10.1002/sim.6052>). Estimated dose-response relationships can be bootstrapped and visualized.
Authors:
BayesianMCPMod_1.0.2.tar.gz
BayesianMCPMod_1.0.2.zip(r-4.5)BayesianMCPMod_1.0.2.zip(r-4.4)BayesianMCPMod_1.0.2.zip(r-4.3)
BayesianMCPMod_1.0.2.tgz(r-4.4-any)BayesianMCPMod_1.0.2.tgz(r-4.3-any)
BayesianMCPMod_1.0.2.tar.gz(r-4.5-noble)BayesianMCPMod_1.0.2.tar.gz(r-4.4-noble)
BayesianMCPMod_1.0.2.tgz(r-4.4-emscripten)BayesianMCPMod_1.0.2.tgz(r-4.3-emscripten)
BayesianMCPMod.pdf |BayesianMCPMod.html✨
BayesianMCPMod/json (API)
NEWS
# Install 'BayesianMCPMod' in R: |
install.packages('BayesianMCPMod', repos = c('https://boehringer-ingelheim.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/boehringer-ingelheim/bayesianmcpmod/issues
Last updated 3 months agofrom:c8c6019d7a. Checks:ERROR: 1 WARNING: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | FAIL | Oct 29 2024 |
R-4.5-win | WARNING | Oct 29 2024 |
R-4.5-linux | WARNING | Oct 29 2024 |
R-4.4-win | WARNING | Oct 29 2024 |
R-4.4-mac | WARNING | Oct 29 2024 |
R-4.3-win | WARNING | Oct 29 2024 |
R-4.3-mac | WARNING | Oct 29 2024 |
Exports:assessDesigngetBootstrapQuantilesgetContrgetCritProbgetESSgetModelFitsgetPosteriorperformBayesianMCPperformBayesianMCPModsimulateData
Dependencies:abindassertthatbackportsbayesplotBHcallrcheckmateclicolorspacedescdistributionalDoseFindingdplyrfansifarverFormulagenericsggplot2ggridgesgluegridExtragtableinlineisobandlabelinglatticelifecycleloomagrittrMASSMatrixmatrixStatsmgcvmunsellmvtnormnlmenloptrnumDerivpillarpkgbuildpkgconfigplyrposteriorprocessxpsQuickJSRR6RBesTRColorBrewerRcppRcppEigenRcppParallelreshape2rlangrstanrstantoolsscalesStanHeadersstringistringrtensorAtibbletidyselectutf8vctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
assessDesign . | assessDesign |
getBootstrapQuantiles | getBootstrapQuantiles |
getContr | getContr |
getCritProb | getCritProb |
getESS | getESS |
getModelFits | getModelFits |
getPosterior | getPosterior |
performBayesianMCP | performBayesianMCP |
performBayesianMCPMod | performBayesianMCPMod |
plot.modelFits | plot.modelFits |
predict.modelFits | predict.modelFits |
simulateData | simulateData |