
Package: BayesianMCPMod (via r-universe)
October 29, 2024

Title Simulate, Evaluate, and Analyze Dose Finding Trials with
Bayesian MCPMod

Version 1.0.2

Description Bayesian MCPMod (Fleischer et al. (2022)
<doi:10.1002/pst.2193>) is an innovative method that improves
the traditional MCPMod by systematically incorporating
historical data, such as previous placebo group data. This R
package offers functions for simulating, analyzing, and
evaluating Bayesian MCPMod trials with normally distributed
endpoints. It enables the assessment of trial designs
incorporating historical data across various true dose-response
relationships and sample sizes. Robust mixture prior
distributions, such as those derived with the
Meta-Analytic-Predictive approach (Schmidli et al. (2014)
<doi:10.1111/biom.12242>), can be specified for each dose
group. Resulting mixture posterior distributions are used in
the Bayesian Multiple Comparison Procedure and modeling steps.
The modeling step also includes a weighted model averaging
approach (Pinheiro et al. (2014) <doi:10.1002/sim.6052>).
Estimated dose-response relationships can be bootstrapped and
visualized.

License Apache License (>= 2)

URL https://boehringer-ingelheim.github.io/BayesianMCPMod/,

https://github.com/Boehringer-Ingelheim/BayesianMCPMod

BugReports https://github.com/Boehringer-Ingelheim/BayesianMCPMod/issues

Depends R (>= 4.2)

Imports checkmate, DoseFinding (>= 1.1-1), ggplot2, nloptr, RBesT,
stats

Suggests clinDR, data.table, doFuture, quarto, doRNG, dplyr,
kableExtra, knitr, MCPModPack, reactable, rmarkdown, spelling,
testthat (>= 3.0.0), tibble

VignetteBuilder quarto

1

https://doi.org/10.1002/pst.2193
https://doi.org/10.1111/biom.12242
https://doi.org/10.1002/sim.6052
https://boehringer-ingelheim.github.io/BayesianMCPMod/
https://github.com/Boehringer-Ingelheim/BayesianMCPMod
https://github.com/Boehringer-Ingelheim/BayesianMCPMod/issues

2 assessDesign

Config/testthat/edition 3

Encoding UTF-8

Language en-US

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

Repository https://boehringer-ingelheim.r-universe.dev

RemoteUrl https://github.com/boehringer-ingelheim/bayesianmcpmod

RemoteRef HEAD

RemoteSha c8c6019d7a96711a890f2b059ebfd389994a3464

Contents
assessDesign . 2
getBootstrapQuantiles . 4
getContr . 5
getCritProb . 7
getESS . 8
getModelFits . 8
getPosterior . 10
performBayesianMCP . 11
performBayesianMCPMod . 13
plot.modelFits . 14
predict.modelFits . 15
simulateData . 16

Index 18

assessDesign assessDesign .

Description

This function performs simulation based trial design evaluations for a set of specified dose-response
models

Usage

assessDesign(
n_patients,
mods,
prior_list,
sd,
n_sim = 1000,

assessDesign 3

alpha_crit_val = 0.05,
simple = TRUE,
reestimate = FALSE,
contr = NULL,
dr_means = NULL

)

Arguments

n_patients Vector specifying the planned number of patients per dose group

mods An object of class "Mods" as specified in the DoseFinding package.

prior_list A prior_list object specifying the utilized prior for the different dose groups

sd A positive value, specification of assumed sd

n_sim Number of simulations to be performed

alpha_crit_val (Un-adjusted) Critical value to be used for the MCP testing step. Passed to
the getCritProb() function for the calculation of adjusted critical values (on the
probability scale). Default is 0.05.

simple Boolean variable defining whether simplified fit will be applied. Passed to the
getModelFits function. Default FALSE.

reestimate Boolean variable defining whether critical value should be calculated with re-
estimated contrasts (see getCritProb function for more details). Default FALSE

contr An object of class ’optContr’ as created by the getContr() function. Allows
specification of a fixed contrasts matrix. Default NULL

dr_means A vector, allows specification of individual (not model based) assumed effects
per dose group. Default NULL

Value

Returns success probabilities for the different assumed dose-response shapes, attributes also in-
cludes information around average success rate (across all assumed models) and prior Effective
sample size

Examples

if (interactive()) { # takes typically > 5 seconds

mods <- DoseFinding::Mods(linear = NULL,
linlog = NULL,
emax = c(0.5, 1.2),
exponential = 2,
doses = c(0, 0.5, 2,4, 8),
maxEff = 6)

sd <- 12
prior_list <- list(Ctrl = RBesT::mixnorm(comp1 = c(w = 1, m = 0, s = 12), sigma = 2),

DG_1 = RBesT::mixnorm(comp1 = c(w = 1, m = 1, s = 12), sigma = 2),
DG_2 = RBesT::mixnorm(comp1 = c(w = 1, m = 1.2, s = 11), sigma = 2) ,
DG_3 = RBesT::mixnorm(comp1 = c(w = 1, m = 1.3, s = 11), sigma = 2) ,
DG_4 = RBesT::mixnorm(comp1 = c(w = 1, m = 2, s = 13), sigma = 2))

4 getBootstrapQuantiles

n_patients <- c(40, 60, 60, 60, 60)

success_probabilities <- assessDesign(
n_patients = n_patients,
mods = mods,
prior_list = prior_list,
sd = sd,
n_sim = 1e2) # speed up exammple run time

success_probabilities

}

getBootstrapQuantiles getBootstrapQuantiles

Description

A function for the calculation of bootstrapped model predictions. Samples from the posterior dis-
tribution are drawn (via the RBesT function rmix()) and for every sample the simplified fitting step
(see getModelFits() function) and a prediction is performed. These fits are then used to identify the
specified quantiles. This approach can be considered as the Bayesian equivalent of the frequentist
bootstrap approach described in O’Quigley et al. (2017). Instead of drawing n bootstrap samples
from the sampling distribution of the trial dose-response estimates, here the samples are directly
taken from the posterior distribution.

Usage

getBootstrapQuantiles(
model_fits,
quantiles,
n_samples = 1000,
doses = NULL,
avg_fit = TRUE

)

Arguments

model_fits An object of class modelFits, i.e. information about fitted models & correspond-
ing model coefficients as well as the posterior distribution that was the basis for
the model fitting

quantiles A vector of quantiles that should be evaluated

n_samples Number of samples that should be drawn as basis for the bootstrapped quantiles

doses A vector of doses for which a prediction should be performed

avg_fit Boolean variable, defining whether an average fit (based on generalized AIC
weights) should be performed in addition to the individual models. Default
TRUE.

getContr 5

Value

A data frame with columns for model, dose, and bootstrapped samples

References

O’Quigley J, Iasonos A, Bornkamp B. 2017. Handbook of Methods for Designing, Monitoring, and
Analyzing Dose-Finding Trials (1st ed.). Chapman and Hall/CRC. doi:10.1201/9781315151984

Examples

posterior_list <- list(Ctrl = RBesT::mixnorm(comp1 = c(w = 1, m = 0, s = 1), sigma = 2),
DG_1 = RBesT::mixnorm(comp1 = c(w = 1, m = 3, s = 1.2), sigma = 2),
DG_2 = RBesT::mixnorm(comp1 = c(w = 1, m = 4, s = 1.5), sigma = 2) ,
DG_3 = RBesT::mixnorm(comp1 = c(w = 1, m = 6, s = 1.2), sigma = 2) ,
DG_4 = RBesT::mixnorm(comp1 = c(w = 1, m = 6.5, s = 1.1), sigma = 2))

models <- c("exponential", "linear")
dose_levels <- c(0, 1, 2, 4, 8)
fit <- getModelFits(models = models,

posterior = posterior_list,
dose_levels = dose_levels,
simple = TRUE)

getBootstrapQuantiles(model_fits = fit,
quantiles = c(0.025, 0.5, 0.975),
n_samples = 10, # speeding up example run time
doses = c(0, 6, 8))

getContr getContr

Description

This function calculates contrast vectors that are optimal for detecting certain alternatives via ap-
plying the function optContr() of the DoseFinding package. Hereby 4 different options can be
distinguished that are automatically executed based on the input that is provided

1. Bayesian approach: If dose_weights and a prior_list are provided an optimized contrasts for
the posterior sample size is calculated. In detail, in a first step the dose_weights (typically the
number of patients per dose group) and the prior information is combined by calculating for
each dose group a posterior effective sample. Based on this posterior effective sample sizes
the allocation ratio is derived, which allows for a calculation on pseudo-optimal contrasts via
regular MCPMod are calculated from the regular MCPMod for these specific weights

2. Frequentist approach: If only dose_weights are provided optimal contrast vectors are calcu-
lated from the regular MCPMod for these specific weights

3. Bayesian approach + re-estimation: If only a sd_posterior (i.e. variability of the posterior
distribution) is provided, pseudo-optimal contrasts based on these posterior weights will be
calculated

6 getContr

4. Frequentist approach+re-estimation:If only a se_new_trial (i.e. the estimated variability per
dose group of a new trial) is provided, optimal contrast vectors are calculated from the regular
MCPMod for this specific vector of standard errors. For the actual evaluation this vector of
standard errors is translated into a (diagonal) matrix of variances

Usage

getContr(
mods,
dose_levels,
dose_weights = NULL,
prior_list = NULL,
sd_posterior = NULL,
se_new_trial = NULL

)

Arguments

mods An object of class ’Mods’ as created by the function ’DoseFinding::Mods()’

dose_levels Vector containing the different dosage levels.

dose_weights Vector specifying weights for the different doses. Please note that in case this
information is provided together with a prior (i.e. Option 1) is planned these
two inputs should be provided on the same scale (e.g. patient numbers). Default
NULL

prior_list A list of objects of class ’normMix’ as created with ’RBesT::mixnorm()’. Only
required as input for Option 1. Default NULL

sd_posterior A vector of positive values with information about the variability of the posterior
distribution, only required for Option 3. Default NULL

se_new_trial A vector of positive values with information about the observed variability, only
required for Option 4. Default NULL

Value

An object of class ’optContr’ as provided by the function ’DoseFinding::optContr()’.

Examples

dose_levels <- c(0, 0.5, 2, 4, 8)
mods <- DoseFinding::Mods(

linear = NULL,
linlog = NULL,
emax = c(0.5, 1.2),
exponential = 2,
doses = dose_levels,
maxEff = 6)

sd_posterior <- c(2.8, 3, 2.5, 3.5, 4)

contr_mat <- getContr(
mods = mods,

getCritProb 7

dose_levels = dose_levels,
sd_posterior = sd_posterior)

getCritProb getCritProb

Description

This function calculates multiplicity adjusted critical values. The critical values are calculated in
such a way that when using non-informative priors the actual error level for falsely declaring a sig-
nificant trial in the Bayesian MCPMod is controlled (by the specified alpha level). Hereby optimal
contrasts of the frequentist MCPMod are applied and two options can be distinguished

1. Frequentist approach: If only dose_weights are provided optimal contrast vectors are calcu-
lated from the regular MCPMod for these specific weights and the corresponding critical value
for this set of contrasts is calculated via the critVal() function of the DoseFinding package.

2. Frequentist approach + re-estimation: If only a se_new_trial (i.e. the estimated variability per
dose group of a new trial) is provided, optimal contrast vectors are calculated from the regular
MCPMod for this specific vector of standard errors. Here as well the critical value for this set
of contrasts is calculated via the critVal() function of the DoseFinding package.

Usage

getCritProb(
mods,
dose_levels,
dose_weights = NULL,
se_new_trial = NULL,
alpha_crit_val = 0.025

)

Arguments

mods An object of class "Mods" as specified in the DoseFinding package.

dose_levels Vector containing the different dosage levels.

dose_weights Vector specifying weights for the different doses, only required for Option i).
Default NULL

se_new_trial A vector of positive values, only required for Option ii). Default NULL

alpha_crit_val Significance level. Default set to 0.025.

Value

Multiplicity adjusted critical value on the probability scale.

8 getModelFits

Examples

mods <- DoseFinding::Mods(linear = NULL,
linlog = NULL,
emax = c(0.5, 1.2),
exponential = 2,
doses = c(0, 0.5, 2,4, 8))

dose_levels <- c(0, 0.5, 2, 4, 8)
critVal <- getCritProb(

mods = mods,
dose_weights = c(50,50,50,50,50), #reflecting the planned sample size
dose_levels = dose_levels,
alpha_crit_val = 0.05)

getESS getESS

Description

This function calculates the effective sample size for every dose group via the RBesT function ess().

Usage

getESS(post_list)

Arguments

post_list A posterior list object, for which the effective sample size for each dose group
should be calculated

Value

A vector of the effective sample sizes for each dose group

getModelFits getModelFits

Description

Fits dose-response curves for the specified dose-response models, based on the posterior distribu-
tions. For the simplified fit, multivariate normal distributions will be approximated and reduced by
one-dimensional normal distributions. For the default case, the Nelder-Mead algorithm is used. In
detail, for both approaches the mean vector θY and the covariance Σ of the (mixture) posterior dis-
tributions and the corresponding posterior weights ω̃l for l ∈ 1, ..., L are used as basis For the full

getModelFits 9

fit a GLS estimator is used to minimize the following expression for the respective dose-response
models m

θ̂m = argminθm

L∑
l=1

ω̃l(θ
Y
li − f(dosei, θ̂m))′Σ−1

l (θYli − f(dosei, θ̂m))

Therefore the function nloptr of the nloptr package is utilized. In the simplified case L = 1, as the
dimension of the posterior is reduced to 1 first. The generalized AIC values are calculated via the
formula

gAICm =

L∑
l=1

ω̃l

K∑
i=0

1

Σli,i

(θYli − f(dosei, θ̂m))2 + 2p

where p denotes the number of estimated parameters and K the number of active dose levels. Here
as well for the simplified case the formula reduces to one summand as L = 1. Corresponding gAIC
based weights for model M are calculated as outlined in Schorning et al. (2016)

ΩI(M) =
exp(−0.5gAICM)∑Q

m=1 exp(−0.5gAICm)

where Q denotes the number of models included in the averaging procedure.

Usage

getModelFits(models, dose_levels, posterior, simple = FALSE)

Arguments

models List of model names for which a fit will be performed.

dose_levels A vector containing the different dosage levels.

posterior A getPosterior object, containing the (multivariate) posterior distribution per
dosage level.

simple Boolean variable, defining whether simplified fit will be applied. Default FALSE.

Value

An object of class modelFits. A list containing information about the fitted model coefficients,
the prediction per dose group as well as maximum effect and generalized AIC (and corresponding
weight) per model.

References

Schorning K, Bornkamp B, Bretz F, Dette H. 2016. Model selection versus model averaging in dose
finding studies. Stat Med; 35; 4021-4040.

Examples

posterior_list <- list(Ctrl = RBesT::mixnorm(comp1 = c(w = 1, m = 0, s = 1), sigma = 2),
DG_1 = RBesT::mixnorm(comp1 = c(w = 1, m = 3, s = 1.2), sigma = 2),
DG_2 = RBesT::mixnorm(comp1 = c(w = 1, m = 4, s = 1.5), sigma = 2) ,
DG_3 = RBesT::mixnorm(comp1 = c(w = 1, m = 6, s = 1.2), sigma = 2) ,

10 getPosterior

DG_4 = RBesT::mixnorm(comp1 = c(w = 1, m = 6.5, s = 1.1), sigma = 2))
models <- c("emax", "exponential", "sigEmax", "linear")
dose_levels <- c(0, 1, 2, 4, 8)

fit <- getModelFits(models = models,
posterior = posterior_list,
dose_levels = dose_levels)

fit_simple <- getModelFits(models = models,
posterior = posterior_list,
dose_levels = dose_levels,
simple = TRUE)

getPosterior getPosterior

Description

Either the patient level data or both mu_hat as well as S_hat must to be provided. If patient level data
is provided mu_hat and S_hat are calculated within the function using a linear model. This function
calculates the posterior distribution. Depending on the input for S_hat this step is either performed
for every dose group independently via the RBesT function postmix() or the mvpostmix() function
of the DoseFinding package is utilized. In the latter case conjugate posterior mixture of multivariate
normals are calculated (DeGroot 1970, Bernardo and Smith 1994)

Usage

getPosterior(
prior_list,
data = NULL,
mu_hat = NULL,
S_hat = NULL,
calc_ess = FALSE

)

Arguments

prior_list a prior list with information about the prior to be used for every dose group
data dataframe containing the information of dose and response. Default NULL Also

a simulateData object can be provided.
mu_hat vector of estimated mean values (per dose group).
S_hat Either a vector or a covariance matrix specifying the (estimated) variability can

be specified. The length of the vector (resp. the dimension of the matrix) needs
to match the number of dose groups. Please note that for a vector input the
numbers should reflect the standard error per dose group (i.e. square root of
variance), while for a matrix input the variance-covariance matrix should be
provided.

calc_ess boolean variable, indicating whether effective sample size should be calculated.
Default FALSE

performBayesianMCP 11

Value

posterior_list, a posterior list object is returned with information about (mixture) posterior distribu-
tion per dose group (more detailed information about the conjugate posterior in case of covariance
input for S_hat is provided in the attributes)

References

BERNARDO, Jl. M., and Smith, AFM (1994). Bayesian Theory. 81.

Examples

prior_list <- list(Ctrl = RBesT::mixnorm(comp1 = c(w = 1, m = 0, s = 5), sigma = 2),
DG_1 = RBesT::mixnorm(comp1 = c(w = 1, m = 1, s = 12), sigma = 2),
DG_2 = RBesT::mixnorm(comp1 = c(w = 1, m = 1.2, s = 11), sigma = 2) ,
DG_3 = RBesT::mixnorm(comp1 = c(w = 1, m = 1.3, s = 11), sigma = 2) ,
DG_4 = RBesT::mixnorm(comp1 = c(w = 1, m = 2, s = 13), sigma = 2))

mu <- c(0, 1, 1.5, 2, 2.5)
S_hat <- c(5, 4, 6, 7, 8)

posterior_list <- getPosterior(
prior_list = prior_list,
mu_hat = mu,
S_hat = S_hat)

summary(posterior_list)

performBayesianMCP performBayesianMCP

Description

Performs Bayesian MCP Test step, as described in Fleischer et al. (2022). Tests for a dose-response
effect using a model-based multiple contrast test based on the (provided) posterior distribution. In
particular for every dose-response candidate the posterior probability is calculated that the contrast
is bigger than 0 (based on the posterior distribution of the dose groups). In order to obtain significant
test decision we consider the maximum of the posterior probabilities across the different models.
This maximum is compared with a (multiplicity adjusted) critical value (on the probability scale).

Usage

performBayesianMCP(posterior_list, contr, crit_prob_adj)

Arguments

posterior_list An object derived with getPosterior with information about the (mixture) poste-
rior distribution per dose group

12 performBayesianMCP

contr An object of class ’optContr’ as created by the getContr() function. It contains
the contrast matrix to be used for the testing step.

crit_prob_adj A getCritProb object, specifying the critical value to be used for the testing (on
the probability scale)

Value

Bayesian MCP test result, with information about p-values for the individual dose-response shapes
and overall significance

References

Fleischer F, Bossert S, Deng Q, Loley C, Gierse J. 2022. Bayesian MCPMod. Pharmaceutical
Statistics. 21(3): 654-670. doi:10.1002/pst.2193

Examples

mods <- DoseFinding::Mods(linear = NULL,
linlog = NULL,
emax = c(0.5, 1.2),
exponential = 2,
doses = c(0, 0.5, 2,4, 8))

dose_levels <- c(0, 0.5, 2, 4, 8)
sd_posterior <- c(2.8,3,2.5,3.5,4)
contr_mat <- getContr(

mods = mods,
dose_levels = dose_levels,
sd_posterior = sd_posterior)

critVal <- getCritProb(
mods = mods,
dose_weights = c(50, 50, 50, 50, 50), #reflecting the planned sample size
dose_levels = dose_levels,
alpha_crit_val = 0.05)

prior_list <- list(Ctrl = RBesT::mixnorm(comp1 = c(w = 1, m = 0, s = 5), sigma = 2),
DG_1 = RBesT::mixnorm(comp1 = c(w = 1, m = 1, s = 12), sigma = 2),
DG_2 = RBesT::mixnorm(comp1 = c(w = 1, m = 1.2, s = 11), sigma = 2) ,
DG_3 = RBesT::mixnorm(comp1 = c(w = 1, m = 1.3, s = 11), sigma = 2) ,
DG_4 = RBesT::mixnorm(comp1 = c(w = 1, m = 2, s = 13), sigma = 2))

mu <- c(0, 1, 1.5, 2, 2.5)
S_hat <- c(5, 4, 6, 7, 8)
posterior_list <- getPosterior(

prior_list = prior_list,
mu_hat = mu,
S_hat = S_hat)

performBayesianMCP(posterior_list = posterior_list,
contr = contr_mat,
crit_prob_adj = critVal)

performBayesianMCPMod 13

performBayesianMCPMod performBayesianMCPMod

Description

Performs Bayesian MCP Test step and modeling in a combined fashion. See performBayesian-
MCP() function for MCP Test step and getModelFits() for the modeling step

Usage

performBayesianMCPMod(posterior_list, contr, crit_prob_adj, simple = FALSE)

Arguments

posterior_list An object of class ’postList’ as created by getPosterior() containing information
about the (mixture) posterior distribution per dose group

contr An object of class ’optContr’ as created by the getContr() function. It contains
the contrast matrix to be used for the testing step.

crit_prob_adj A getCritProb object, specifying the critical value to be used for the testing (on
the probability scale).

simple Boolean variable, defining whether simplified fit will be applied. Passed to the
getModelFits() function. Default FALSE.

Value

Bayesian MCP test result as well as modeling result.

Examples

mods <- DoseFinding::Mods(linear = NULL,
linlog = NULL,
emax = c(0.5, 1.2),
exponential = 2,
doses = c(0, 0.5, 2,4, 8))

dose_levels <- c(0, 0.5, 2, 4, 8)
sd_posterior <- c(2.8, 3, 2.5, 3.5, 4)
contr_mat <- getContr(

mods = mods,
dose_levels = dose_levels,
sd_posterior = sd_posterior)

critVal <- getCritProb(
mods = mods,
dose_weights = c(50, 50, 50, 50, 50), #reflecting the planned sample size
dose_levels = dose_levels,
alpha_crit_val = 0.05)

prior_list <- list(Ctrl = RBesT::mixnorm(comp1 = c(w = 1, m = 0, s = 5), sigma = 2),
DG_1 = RBesT::mixnorm(comp1 = c(w = 1, m = 1, s = 12), sigma = 2),
DG_2 = RBesT::mixnorm(comp1 = c(w = 1, m = 1.2, s = 11), sigma = 2) ,

14 plot.modelFits

DG_3 = RBesT::mixnorm(comp1 = c(w = 1, m = 1.3, s = 11), sigma = 2) ,
DG_4 = RBesT::mixnorm(comp1 = c(w = 1, m = 2, s = 13), sigma = 2))

mu <- c(0, 1, 1.5, 2, 2.5)
S_hat <- c(5, 4, 6, 7, 8)
posterior_list <- getPosterior(

prior_list = prior_list,
mu_hat = mu,
S_hat = S_hat)

performBayesianMCPMod(posterior_list = posterior_list,
contr = contr_mat,
crit_prob_adj = critVal,
simple = FALSE)

plot.modelFits plot.modelFits

Description

Plot function based on the ggplot2 package. Providing visualizations for each model and a average
Fit. Black lines show the fitted dose response models and an AIC based average model. Dots
indicate the posterior median and vertical lines show corresponding credible intervals (i.e. the
variability of the posterior distribution of the respective dose group). To assess the uncertainty of
the model fit one can in addition visualize credible bands (default coloring as orange shaded areas).
The calculation of these bands is performed via the getBootstrapQuantiles() function. The default
setting is that these credible bands are not calculated.

Usage

S3 method for class 'modelFits'
plot(
x,
gAIC = TRUE,
avg_fit = TRUE,
cr_intv = TRUE,
alpha_CrI = 0.05,
cr_bands = FALSE,
alpha_CrB = c(0.05, 0.5),
n_bs_smpl = 1000,
acc_color = "orange",
...

)

Arguments

x An object of type modelFits

gAIC Logical value indicating whether gAIC values are shown in the plot. Default
TRUE

predict.modelFits 15

avg_fit Logical value indicating whether average fit is presented in the plot. Default
TRUE

cr_intv Logical value indicating whether credible intervals are included in the plot. De-
fault TRUE

alpha_CrI Numerical value of the width of the credible intervals. Default is set to 0.05 (i.e
95% CI are shown).

cr_bands Logical value indicating whether bootstrapped based credible bands are shown
in the plot. Default FALSE

alpha_CrB Numerical vector of the width of the credible bands. Default is set to 0.05 and
0.5 (i.e 95% CB and median are shown).

n_bs_smpl Number of bootstrap samples being used. Default set to 1000.

acc_color Color of the credible bands. Default set to "orange"

... optional parameter to be passed.

Value

A ggplot2 object

Examples

posterior_list <- list(Ctrl = RBesT::mixnorm(comp1 = c(w = 1, m = 0, s = 1), sigma = 2),
DG_1 = RBesT::mixnorm(comp1 = c(w = 1, m = 3, s = 1.2), sigma = 2),
DG_2 = RBesT::mixnorm(comp1 = c(w = 1, m = 4, s = 1.5), sigma = 2) ,
DG_3 = RBesT::mixnorm(comp1 = c(w = 1, m = 6, s = 1.2), sigma = 2) ,
DG_4 = RBesT::mixnorm(comp1 = c(w = 1, m = 6.5, s = 1.1), sigma = 2))

models <- c("exponential", "linear")
dose_levels <- c(0, 1, 2, 4, 8)
fit <- getModelFits(models = models,

posterior = posterior_list,
dose_levels = dose_levels,
simple = TRUE)

plot(fit)

predict.modelFits predict.modelFits

Description

This function performs model predictions based on the provided model and dose specifications

Usage

S3 method for class 'modelFits'
predict(object, doses = NULL, ...)

16 simulateData

Arguments

object A modelFits object containing information about the fitted model coefficients

doses A vector specifying the doses for which a prediction should be done

... Currently without function

Value

a list with the model predictions for the specified models and doses

Examples

posterior_list <- list(Ctrl = RBesT::mixnorm(comp1 = c(w = 1, m = 0, s = 1), sigma = 2),
DG_1 = RBesT::mixnorm(comp1 = c(w = 1, m = 3, s = 1.2), sigma = 2),
DG_2 = RBesT::mixnorm(comp1 = c(w = 1, m = 4, s = 1.5), sigma = 2) ,
DG_3 = RBesT::mixnorm(comp1 = c(w = 1, m = 6, s = 1.2), sigma = 2) ,
DG_4 = RBesT::mixnorm(comp1 = c(w = 1, m = 6.5, s = 1.1), sigma = 2))

models <- c("emax", "exponential", "sigEmax", "linear")
dose_levels <- c(0, 1, 2, 4, 8)
fit <- getModelFits(models = models,

posterior = posterior_list,
dose_levels = dose_levels)

predict(fit, doses = c(0, 1, 3, 4, 6, 8))

simulateData simulateData

Description

Function to simulate patient level data for a normally distributed endpoint

Usage

simulateData(
n_patients,
dose_levels,
sd,
mods,
n_sim = 1000,
true_model = NULL,
dr_means = NULL

)

simulateData 17

Arguments

n_patients Vector containing number of patients as a numerical value per dose-group.

dose_levels Vector containing the different dosage levels.

sd Standard deviation on patient level.

mods An object of class "Mods" as specified in the DoseFinding package.

n_sim Number of simulations to be performed, Default is 1000

true_model Default value is NULL. Assumed true underlying model. Provided via a String.
e.g. "emax". In case of NULL, all dose-response models, included in the mods
input parameter will be used.

dr_means a vector, with information about assumed effects per dose group. Default NULL.

Value

A list object, containing patient level simulated data for all assumed true models. Also providing
information about simulation iteration, patient number as well as dosage levels.

Examples

models <- DoseFinding::Mods(linear = NULL,
linlog = NULL,
emax = c(0.5, 1.2),
exponential = 2,
doses = c(0, 0.5, 2,4, 8),
maxEff = 6)

dose_levels <- c(0, 0.5, 2,4, 8)
sd <- 12
n_patients <- c(40, 60, 60, 60, 60)

sim_data <- simulateData(n_patients = n_patients,
dose_levels = dose_levels,
sd = sd,
mods = models,
n_sim = 100)

sim_data

Index

assessDesign, 2

getBootstrapQuantiles, 4
getContr, 5
getCritProb, 7
getESS, 8
getModelFits, 8
getPosterior, 10

performBayesianMCP, 11
performBayesianMCPMod, 13
plot.modelFits, 14
predict.modelFits, 15

simulateData, 16

18

	assessDesign
	getBootstrapQuantiles
	getContr
	getCritProb
	getESS
	getModelFits
	getPosterior
	performBayesianMCP
	performBayesianMCPMod
	plot.modelFits
	predict.modelFits
	simulateData
	Index

