Package: oncomsm 0.1.5.9000
oncomsm: Bayesian Multi-State Models for Early Oncology
Implements methods to fit a parametric Bayesian multi-state model to tumor response data. The model can be used to sample from the predictive distribution to impute missing data and calculate probability of success for custom decision criteria in early clinical trials during an ongoing trial. The inference is implemented using 'stan'.
Authors:
oncomsm_0.1.5.9000.tar.gz
oncomsm_0.1.5.9000.zip(r-4.5)oncomsm_0.1.5.9000.zip(r-4.4)oncomsm_0.1.5.9000.zip(r-4.3)
oncomsm_0.1.5.9000.tgz(r-4.4-x86_64)oncomsm_0.1.5.9000.tgz(r-4.4-arm64)oncomsm_0.1.5.9000.tgz(r-4.3-x86_64)oncomsm_0.1.5.9000.tgz(r-4.3-arm64)
oncomsm_0.1.5.9000.tar.gz(r-4.5-noble)oncomsm_0.1.5.9000.tar.gz(r-4.4-noble)
oncomsm.pdf |oncomsm.html✨
oncomsm/json (API)
NEWS
# Install 'oncomsm' in R: |
install.packages('oncomsm', repos = c('https://boehringer-ingelheim.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/boehringer-ingelheim/oncomsm/issues
Last updated 2 years agofrom:02d816b057. Checks:OK: 2 NOTE: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 26 2024 |
R-4.5-win-x86_64 | NOTE | Oct 26 2024 |
R-4.5-linux-x86_64 | OK | Oct 26 2024 |
R-4.4-win-x86_64 | NOTE | Oct 26 2024 |
R-4.4-mac-x86_64 | NOTE | Oct 26 2024 |
R-4.4-mac-aarch64 | NOTE | Oct 26 2024 |
R-4.3-win-x86_64 | NOTE | Oct 26 2024 |
R-4.3-mac-x86_64 | NOTE | Oct 26 2024 |
R-4.3-mac-aarch64 | NOTE | Oct 26 2024 |
Exports:check_datacompute_pfscreate_srpmodeldefine_srp_priorimputeparameter_sample_to_tibbleplot_mstateplot_pfsplot_response_probabilityplot_transition_timessample_posteriorsample_predictivesample_priorsimulate_decision_rulevisits_to_mstate
Dependencies:abindbackportsBHcallrcheckmateclicodetoolscolorspacecpp11descdigestdistributionaldplyrfansifarverfurrrfuturegenericsggplot2globalsgluegridExtragtableinlineisobandlabelinglatticelifecyclelistenvloomagrittrMASSMatrixmatrixStatsmgcvmunsellnlmenumDerivparallellypillarpkgbuildpkgconfigposteriorprocessxpspurrrQuickJSRR6RColorBrewerRcppRcppEigenRcppNumericalRcppParallelrlangrstanrstantoolsscalesStanHeadersstringistringrtensorAtibbletidyrtidyselectutf8vctrsviridisLitewithr
Avoiding Bias During Interim Analyses
Rendered fromavoiding-bias.Rmd
usingknitr::rmarkdown
on Oct 26 2024.Last update: 2023-02-15
Started: 2022-12-08
Multi-State Models for Oncology
Rendered fromoncomsm.Rmd
usingknitr::rmarkdown
on Oct 26 2024.Last update: 2023-04-17
Started: 2022-11-07
Prior Choice
Rendered fromprior-choice.Rmd
usingknitr::rmarkdown
on Oct 26 2024.Last update: 2022-12-08
Started: 2022-11-29
Readme and manuals
Help Manual
Help page | Topics |
---|---|
The oncomsm package | oncomsm-package oncomsm |
Check a visits data set for correct format | check_data |
Compute progression-free-survival rate given sample | compute_pfs |
Sample visits from predictive distribution | impute sample_predictive |
Convert parameter sample to data table | parameter_sample_to_tibble |
Swimmer plot of multi-state data | plot_mstate |
Plot progression-free-survival function | plot_pfs |
Plot the response probability distributions | plot_response_probability |
Plot the transition times of a model | plot_transition_times |
Summary plot of model prior | plot.srpmodel |
Print an srpmodel | format.srpmodel print.srpmodel |
Sample parameters from a model | sample_posterior sample_prior |
Simulate results under a custom decision rule | simulate_decision_rule |
A stable-response-progression model | create_srpmodel define_srp_prior srp-model srpmodel |
Convert cross-sectional visit data to multi-state format | visits_to_mstate |